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 Increased renewable energy applications in microgrids imply that 

there is currently less predictability in power generation, implying 

that there is a necessity of sophisticated methods to streamline the 

operations of the microgrid so that it operates effectively and 

steadily. In this work, a hybrid Artificial Intelligence (AI) framework 

is proposed to enhance the way power is transferred in AC and DC 

microgrids with energy storage systems (ESS), distributed energy 

resources (DERs) and integrated with the normal utility grid. The 

proposed solution comprised of DDPG Deep Reinforcement 

Learning and Genetic Algorithms address both real-time and global 

optimization issues. The DRL agent determines the optimal strategies 

to exploit RES, ESS and the grid and the GA enhances the initial 

parameters and critical elements of the model of the agent to achieve 

optimal performance. The framework is studied under different 

conditions and load and generation patterns in two simulation 

environments, one in MATLAB/Simulink and the other in Python 

during 24 hours. Compared to the outcomes, this DRL-GA approach 

is a far better solution than the Mixed Integer Linear Programming 

(MILP) and Particle Swarm Optimization (PSO), leading to an 

operation cost reduction, enhancing voltage stability as well as 

increasing renewables utilization. The findings provide a flexible and 

smart control strategy that will be efficient in microgrid energy 

management. 
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1. INTRODUCTION 

It has seen significant change in power systems with increased use of solar photovoltaic 

(PV) and wind turbines within the industry. The concern about the environment, the necessity to 

find the sustainable energy sources and the new technology is driving the change in central fossil 

fuel plants to the multitude of small renewable generators. Here, decentralized and flexible power 

distribution systems, known as microgrids, have emerged as viable options, allowing operation 
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with both main grids and off-grid, with hybrid microgrids being increasingly popular due to 

support both AC and DC power distribution networks and integrate many different types of 

distributed energy resources (DERs) including solar PV, wind, generators on diesel and energy 

storage (ESS) systems composed of batteries and supercapacitors. Nevertheless, since the resources 

are not determined and predictable, they introduce new problems in the management of movement 

of power in the microgrid.  

It is challenging under these conditions to manage the situations where the voltage and 

frequency may vary, store energy without risk, balance load and save money. Further, popular 

optimization methods, including MILP, Newton-Raphson and rule-based heuristics, struggle with 

such uncertainties. These methods are still challenging to adapt to sudden variations in the amount 

of power being produced and consumed.AI has now enabled managing these issues to be more 

flexible. DRL is a model-free method of learning to control the environment that is accomplished 

on-going. The control systems of microgrids can be enhanced with the usage of GA in a hybrid AI 

system that provides a large search space of optimal parameters. 

Accordingly, this is a research paper seeking AI hybrid models to combine features of DRL 

with GA to realize the real-time power flow control of hybrid AC/DC microgrids which is shown in 

Figure 1. The objectives include cost reduction, better utilization of renewable energy and 

maintaining an unchanged system with varying load and energy generation patterns. 

 

 

Figure 1. Overview of the proposed DRL-GA framework for hybrid microgrid optimization 

 

2. REVIEW OF LITERATURE 

Over the last few years, there has been increased interest by people to optimize power flow 

in hybrid microgrids due to the increased amount of renewable energy, energy storage and 

improved controls. The research works that we are going to discuss in this chapter have been 

conducted in three broad fields: traditional optimization, AI-related methods (including machine 

learning and reinforcement learning) and hybrid AI. 

A majority of early research in microgrid optimization relied on linear programming, 

nonlinear programming and mixed-integer linear programming. Guerrero et al. (2011) proposed 

hierarchical control strategies of microgrids by relying on conventional dispatch schemes to ensure 

voltage and frequency control. Moreover, MPC-based energy scheduling proposed by Vázquez et 

al. (2010) was recommended to apply to microgrids tied to the grid. 
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Even though such techniques are appropriate in deterministic systems, they struggle with 

stochastic variations of RES and would need a substantial computer effort in large-scale 

optimization. 

This is the reason why many individuals resort to the use of PSO, GA and ACO algorithms 

among other metaheuristic techniques since power flow optimization is both non-convex and non-

linear. Ahead of time scheduling of a hybrid microgrid proved to be more effective with PSO, 

according to Liu and Wang (2023). Nevertheless, such methods have a limitation because they have 

predetermined rules of control and are not able to adapt to dynamics and uncertainty. Rule-based 

controllers are the most often selected in microgrid energy management since they are very easy to 

manipulate and durable. However, they cannot be recommended to be applied in the environment 

with high levels of uncertainty and frequently changing data. 

New technologies in the management and optimization of microgrids utilize data to control 

them better, thanks to AI. A more successful short-term outcome was reported by Sharma et al. 

(2021) who relied on supervised learning to predict energy demand and RES power. However, 

supervised learning requires a huge set of labeled data, and it is not particularly suited to taking 

action sequentially. 

Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are used as 

pattern recognition in load profile and RES generation. Their prediction performance has now been 

improved, though they are rarely used directly in control and optimization problems. 

Researchers think that DRL will be significant in the operation of microgrids since it can 

figure out the most excellent course of action through trial and error in the actual environment. In 

2022, the authors used a DQN to enhance the cost effectiveness of the energy scheduling in grid-

connected microgrids that are operated with random fluctuations. In 2021, the authors applied 

DDPG to regulate SOC of ESS and showed better adaptability. 

Despite their other benefits, the deep reinforcement learning methods are normally slow 

and require the selection of appropriate hyperparameters. Moreover, untrained systems can result in 

controls which are unnecessary or even dangerous to complex AC/DC systems. 

Research on how to address the shortcomings of single AI models by structuring AI with 

hybrids has been conducted recently. Tang et al. (2023) enhanced the convergence capabilities and 

increased the policy stability of the systems of the microgrid using PSO-tuned DDPG. However, a 

vast majority of the researchers have merely worked on DC microgrids or have not made 

comparisons with the older systems in detail. 

Some microgrid optimization papers utilized either DRL or GA alone, and hardly any 

studies have developed a framework that combines the best of both DRL and GA in terms of hybrid 

AC/DC microgrids. Very minimal efforts have been exerted in the area of balancing real time 

power flow and cost minimization, system stability and maximization of renewable energy use in 

the field. 

 

3. PROBLEM DEFINITION AND METHODOLOGY 

3.1 System Description 

The given study proceeds by designing a flexible and smart network, integrating the 

sources of energy and loads within the network. It has the following characteristics: 
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They are referred to as solar photovoltaic (PV) panels and wind turbines and since there is 

no assurance of when they will come, their trends are characterized by intermittency. 

The system consists of lithium-ion batteries to store power over a long period and 

introduces supercapacitors to react quickly. An assortment of residential and industrial activities 

with varying demand changes. 

By linking the grid it becomes feasible to have homes and businesses draw energy form the 

grid when it is economical to do so and later feed the grid with any surplus energy. This system has 

both connected and not connected operating modes and reflects the real hybrid AC/DC microgrids. 

3.2 Objective Function 

The primary objective of the optimization problem is to minimize the total operational cost 

of the microgrid over a defined time horizon 𝑇, considering energy purchase, generation, and 

possible revenue from energy export: 

𝐶𝑡𝑜𝑡𝑎𝑙 = ∑ [𝐶𝑔(𝑡)𝑃𝑔(𝑡) + 𝐶𝑠(𝑡)𝑃𝑠(𝑡) − 𝑅𝑠𝑒𝑙𝑙(𝑡)𝑃𝑒𝑥𝑝𝑜𝑟𝑡(𝑡)]𝑇
𝑡=1                               (1) 

Where: 

 𝐶𝑔(𝑡): Cost of energy imported from the grid at time t 

 𝑃𝑔(𝑡): Power drawn from the grid at time t 

 𝐶𝑠(𝑡): Operating cost of local sources (e.g., diesel generator) 

 𝑃𝑠(𝑡): Power generated by dispatchable sources 

 𝑅𝑠𝑒𝑙𝑙(𝑡): Revenue per unit for energy exported to the grid 

 𝑃𝑒𝑥𝑝𝑜𝑟𝑡(𝑡): Power exported to the grid at time t 

3.3 Operational Constraints 

The optimization is subject to the following technical and operational constraints: 

Power Balance Constraint: 

∑ 𝑃𝑠𝑜𝑢𝑟𝑐𝑒(𝑡) = ∑ 𝑃𝑙𝑜𝑎𝑑(𝑡)                              (2) 

This ensures that the total power supplied meets the total demand at all times. 

Battery State of Charge (SOC) Limits: 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑡)𝑆𝑂𝐶𝑚𝑎𝑥                                   (3) 

This maintains battery health and ensures sufficient storage availability. 

Grid Exchange Limits: 

𝑃 𝑚𝑖𝑛
𝑖𝑚𝑝𝑜𝑟𝑡

≤ 𝑃𝑔(𝑡) ≤ 𝑃 𝑚𝑎𝑥
𝑖𝑚𝑝𝑜𝑟𝑡

𝑎𝑛𝑑 0 ≤ 𝑃𝑒𝑥𝑝𝑜𝑟𝑡(𝑡) ≤ 𝑃 𝑚𝑎𝑥
𝑒𝑥𝑝𝑜𝑟𝑡

                       (4) 

Voltage and Frequency Regulation: 

𝑉𝑚𝑖𝑛 ≤ 𝑉(𝑡) ≤ 𝑉𝑚𝑎𝑥  ;    𝑓𝑚𝑖𝑛 ≤ 𝑓(𝑡) ≤ 𝑓𝑚𝑎𝑥                             (5) 

These constraints ensure power quality and system stability. 
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Figure 2. Block diagram of hybrid microgrid system and optimization parameters 

The block diagram of hybrid microgrid system and optimization parameters is represented 

in Figure 2. 

 

4. AI-BASED FRAMEWORK DESIGN 

In the proposed research, a framework integrating Deep Reinforcement Learning (DRL) 

and Genetic Algorithms (GA) is being proposed to address the challenging, stochastic and real-time 

nature of the problems that hybrid microgrids have to deal with. DRL enables the robot to select 

appropriate action in an uncertain environment and GA enhances the performance and the learning 

speed of the DRL agent by modifying the neural network parameters. 

4.1 Deep Reinforcement Learning (DRL) Agent Design 

The DDPG is applied among many other methods primarily because it works well in 

continuous action spaces required to operate energy dispatch, battery storage and grid interactions 

in hybrid systems. 

Control Objectives of DRL Agent: 

 Optimal dispatch of Distributed Energy Resources (DERs) 

 Battery charge/discharge scheduling 

 Bidirectional grid power flow control 

State Space (St): 

The input state vector at time t includes: 

 𝐷(𝑡): Load demand forecast 

 𝑅𝑎𝑣𝑎𝑖𝑙 Renewable generation availability (solar/wind) 

 𝑆𝑂𝐶(𝑡): State of charge of the battery 

 𝑃𝑔𝑟𝑖𝑑(𝑡): Electricity price or tariff at time t 

𝑆𝑡 = [𝐷(𝑡), 𝑅𝑎𝑣𝑎𝑖𝑙(𝑡), 𝑆𝑂𝐶(𝑡), 𝑃𝑔𝑟𝑖𝑑(𝑡)]                       (6) 

Action Space (At): 

The action vector determines how power is allocated among: 

 Renewable sources 

 Storage devices (charge/discharge levels) 
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 Grid import/export 

𝐴𝑡 = [𝑃𝑠𝑜𝑙𝑎𝑟 , 𝑃𝑤𝑖𝑛𝑑, 𝑃 𝑐ℎ𝑎𝑟𝑔𝑒
𝑏𝑎𝑡𝑡𝑒𝑟𝑦

,
𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑏𝑎𝑡𝑡𝑒𝑟𝑦

𝑃𝑖𝑚𝑝𝑜𝑟𝑡
𝑔𝑟𝑖𝑑

,
𝑃𝑒𝑥𝑝𝑜𝑟𝑡

𝑔𝑟𝑖𝑑

]                     (7) 

Reward Function (rt): 

To guide the learning process, a scalar reward is computed based on system objectives: 

 

𝑟𝑡 = −𝐶𝑡𝑜𝑡𝑎𝑙(𝑡) − 𝜆1|𝑉(𝑡) − 𝑉𝑟𝑒𝑓| − 𝜆2 △ 𝑆𝑂𝐶(𝑡)                           (8) 

Where: 

𝐶𝑡𝑜𝑡𝑎𝑙(𝑡) 𝑖𝑠Total operational cost at time t, 𝑉(𝑡)𝑖𝑠 System voltage, 𝑉𝑟𝑒𝑓 𝑖𝑠 Nominal reference 

voltage, 𝛥𝑆𝑂𝐶(𝑡) is Change in battery SOC (to penalize unnecessary cycling) 

𝜆1, 𝜆2 𝑖𝑠 Weighting factors for penalty terms. 

4.2 Genetic Algorithm (GA) Optimization 

In this case, a method is proposed, where the Genetic Algorithm (GA) is used to find the 

optimal behaviour and speed of convergence of the Deep Reinforcement Learning (DRL) agent. 

Since DRL is enhanced by learning with the environment, its achievement is highly reliant on the 

initial values of the significant neural network and hyperparameters. DRL-GA framework 

overcomes the challenges of tuning the DDPG agent through the assistance of a globally optimal 

point and adaptive updating via Genetic Algorithm. First, global search using GA, it is possible to 

choose improved initial weights of the actor and critic in DDPG, as random initialization may 

speed up the process or provide unsatisfactory results. On top of this, GA is expected to regulate 

important hyperparameters itself, based on the performance it receives, so a user needs to perform 

less manual testing. GA optimizes the valuable operation limits that include the maximum charge 

on battery, the maximum power to be handed over by the wind turbine, and the limitation of the 

amount of power that the turbine can deliver to the grid. Consequently, the DRL policy is more 

effective and falls within the bounds of the system components in a hybrid microgrid. GA 

flowchart is given in Figure 3.  

 
Figure 3. Flowchart representing the Genetic Algorithm 
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GA Configuration Parameters: 

 Population size: 30 

 Crossover rate: 0.8 (for combining elite individuals) 

 Mutation rate: 0.1 (to maintain genetic diversity) 

 Selection method: Tournament selection 

 Fitness function: Cumulative reward obtained from the DRL agent after a full episode 

This integration reduces training time, improves convergence stability, and avoids suboptimal 

policy entrapment. The below Table 1 is showing the parameter: 

Table 1. Parameters 

Parameter Suggested Value 

Population Size 30 – 50 

Crossover Probability 0.8 

Mutation Probability 0.1 – 0.2 

Distribution Index ηc\eta_c (SBX) 10 – 20 

Distribution Index ηm\eta_m (Polynomial) 20 – 100 

4.3 Hybrid AI Workflow 

The integrated DRL-GA framework operates through the following steps: 

 Initialization: GA generates initial configurations, including neural network weights and 

hyperparameters, forming a diverse population of candidate DRL agents. 

 Policy Learning: Each DRL agent undergoes training over multiple episodes in a simulated 

hybrid microgrid environment. Their policy is updated using the DDPG algorithm based on the 

observed rewards and state transitions. 

 Fitness Evaluation: At the end of training, the total cumulative reward obtained by each agent 

is used to evaluate its fitness. 

 GA Evolution Loop: 

o GA selects top-performing individuals. 

o Crossover and mutation are applied to produce the next generation. 

o The process repeats until convergence criteria (e.g., reward threshold or max generations) 

are met. 

 Final Deployment: The best-performing DRL agent is selected and deployed for real-time 

microgrid control. 

 

 

5.    SIMULATION RESULTS AND VALIDATION 

 

This chapter gives experimental results that support our suggested technique to monitor 

power flow procedures in a hybrid microgrid. In order to assess the cost savings, voltage reliability, 

increased renewable utilization and independence of main grid, the simulation results are compared 

with those achieved through simulation-based method (MILP) and particle swarm optimization 

(PSO). 

5.1 Simulation Setup 

To evaluate the optimality of the DRL-GA-based optimization system, a co-simulation 

environment was adopted to combine its electrical modeling with its decision-making system. The 

hybrid microgrid composed of solar PV, wind turbines, lithium-ion batteries, supercapacitors and 
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bidirectional grid connecting was studied repeatedly by creating a model in MATLAB/Simulink. 

Due to this environment, a dynamic simulation could be done on the response of electrical 

equipment, the transfer of energy and the changing power supplies based on loads and generation. 

The Deep Reinforcement Learning agent and Genetic Algorithm were applied using Python, 

TensorFlow and Keras simultaneously.  

The agent was taught any energy management policies it discovered in the course of 

training, through real-time observations of the state, with the help of the DDPG algorithm. To unify 

MATLAB and Python, the system used OpenAI Gym-style APIs, socket communication or 

MATLAB Engine for Python to enable the control agent to talk directly to the physical simulation 

in real time. The results consist of 96 time steps after a 15-minute simulation run in 24 hours which 

is represented in Figure 4. Real weather records data was employed to supply solar irradiance and 

wind speed and time-varying loads based on residence and industry were also incorporated in the 

profile. Using this hybrid platform, the optimization framework has been tested and its 

performance proved in changing and unpredictable operating conditions. 

 

 
Figure 4. Battery SOC Trajectory Over 24 Hours 

 

5.2 Baseline Comparison 

 

Table 2 depicts the comparison of the proposed model with baseline models. The 

performance of the proposed DRL-GA approach was benchmarked against two widely used 

optimization strategies: 

 MILP: Used as a deterministic baseline model, ideal for linear energy scheduling problems 

under simplified assumptions. 

 PSO: A metaheuristic method that can handle nonlinearity but lacks adaptability to real-time 

system dynamics. 

Table 2. Performance comparison with baseline models 

Method Operational Cost 

(INR) 

Voltage Deviation 

(p.u.) 

Renewable 

Utilization (%) 

Grid Dependency 

(%) 

MILP 5,840 ±0.09 78.4 35.7 

PSO 5,620 ±0.07 81.2 30.2 

DRL-

GA 

5,110 ±0.04 88.7 18.9 
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Interpretation: 

 DRL-GA achieved the lowest operational cost, saving ~12% over PSO and ~14% over MILP. 

 It maintained superior voltage regulation, crucial for power quality in sensitive AC/DC loads. 

 The model promoted maximum use of renewables and significantly reduced grid import. 

 

5.3 Performance Evaluation 

The DRL-GA framework was used to simulate tasks and significant enhancements over 

other optimization methods were discovered. Compared to PSO and MILP, the model provided a 

substantial cost reduction in cases when it was used as a replacement, the primary savings being 

attained through utilization of renewable energy during high price periods and the optimal 

utilization of batteries. Voltage regulation (keeping voltage in the needed limit +/- 0.04 p.u.) could 

be achieved due to the cost of voltage deviation inclusion to the reward function, which enabled the 

sources and storage to cooperate efficiently.  

As a result of GA-adjusted thresholds in the DRL agent, the charge of the battery never 

dropped to critically low states or climbed to extreme heights but remained within the acceptable 

range of the system, between 20 and 90 percent. Optimally trained DRL-GA required just 800 

training episodes, compared to standalone DRL which required more than 1,200 training episodes 

before it recorded good training performance. Also, the dependence on the grid decreased to 18.9%, 

which proved that the microgrid can operate independently and, therefore, it can be installed in the 

place where it is required to be self-sufficient. Performance comparison is illustrated in Figure 5.  

 

 
Figure 5. Performance Comparison of Optimization Methods 

 

6. CONCLUSION 

In this paper, a novel hybrid structure was initiated, which incorporates DRL and GA to 

enhance power flow in AC/DC microgrids. The new method can overcome the limitations of past 

and heuristic optimization based solutions because it enables active, continuous control of DERs, 

ESS and the grid under dynamic and uncertain conditions. The presence of DRL in the system 

makes the policy smarter since the environment reacts, and GA refines the settings of the neural 

network and significant operational parameters, enhancing convergence. The simulation indicated 

that the DRL-GA framework is significantly more effective than the conventional MILP and PSO 
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approaches, which results in lower operating cost, better voltage stability, lesser stresses on the 

batteries and higher percentage of renewable energy to utility companies. When this framework is 

applied, there is more rapid convergence of training and a reduction of the level of training 

variance due to the initialization by GA. Moreover, the system possessed high capability of self-

powering itself that was useful in remote and islanded microgrid conditions. Overall, the approach 

provides a feasible, smart and constraint-adherent way of managing energy in the modern hybrid 

microgrids. 
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