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Increased renewable energy applications in microgrids imply that
there is currently less predictability in power generation, implying
that there is a necessity of sophisticated methods to streamline the
operations of the microgrid so that it operates effectively and
steadily. In this work, a hybrid Artificial Intelligence (Al) framework
is proposed to enhance the way power is transferred in AC and DC
microgrids with energy storage systems (ESS), distributed energy
resources (DERs) and integrated with the normal utility grid. The
proposed solution comprised of DDPG Deep Reinforcement
Learning and Genetic Algorithms address both real-time and global
optimization issues. The DRL agent determines the optimal strategies
to exploit RES, ESS and the grid and the GA enhances the initial
parameters and critical elements of the model of the agent to achieve
optimal performance. The framework is studied under different
conditions and load and generation patterns in two simulation
environments, one in MATLAB/Simulink and the other in Python
during 24 hours. Compared to the outcomes, this DRL-GA approach
is a far better solution than the Mixed Integer Linear Programming
(MILP) and Particle Swarm Optimization (PSO), leading to an
operation cost reduction, enhancing voltage stability as well as
increasing renewables utilization. The findings provide a flexible and
smart control strategy that will be efficient in microgrid energy
management.
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1. INTRODUCTION

It has seen significant change in power systems with increased use of solar photovoltaic
(PV) and wind turbines within the industry. The concern about the environment, the necessity to
find the sustainable energy sources and the new technology is driving the change in central fossil
fuel plants to the multitude of small renewable generators. Here, decentralized and flexible power
distribution systems, known as microgrids, have emerged as viable options, allowing operation
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with both main grids and off-grid, with hybrid microgrids being increasingly popular due to
support both AC and DC power distribution networks and integrate many different types of
distributed energy resources (DERs) including solar PV, wind, generators on diesel and energy
storage (ESS) systems composed of batteries and supercapacitors. Nevertheless, since the resources
are not determined and predictable, they introduce new problems in the management of movement
of power in the microgrid.

It is challenging under these conditions to manage the situations where the voltage and
frequency may vary, store energy without risk, balance load and save money. Further, popular
optimization methods, including MILP, Newton-Raphson and rule-based heuristics, struggle with
such uncertainties. These methods are still challenging to adapt to sudden variations in the amount
of power being produced and consumed.Al has now enabled managing these issues to be more
flexible. DRL is a model-free method of learning to control the environment that is accomplished
on-going. The control systems of microgrids can be enhanced with the usage of GA in a hybrid Al
system that provides a large search space of optimal parameters.

Accordingly, this is a research paper seeking Al hybrid models to combine features of DRL
with GA to realize the real-time power flow control of hybrid AC/DC microgrids which is shown in
Figure 1. The objectives include cost reduction, better utilization of renewable energy and
maintaining an unchanged system with varying load and energy generation patterns.
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Figure 1. Overview of the proposed DRL-GA framework for hybrid microgrid optimization

2. REVIEW OF LITERATURE

Over the last few years, there has been increased interest by people to optimize power flow
in hybrid microgrids due to the increased amount of renewable energy, energy storage and
improved controls. The research works that we are going to discuss in this chapter have been
conducted in three broad fields: traditional optimization, Al-related methods (including machine
learning and reinforcement learning) and hybrid Al.

A majority of early research in microgrid optimization relied on linear programming,
nonlinear programming and mixed-integer linear programming. Guerrero et al. (2011) proposed
hierarchical control strategies of microgrids by relying on conventional dispatch schemes to ensure
voltage and frequency control. Moreover, MPC-based energy scheduling proposed by Vazquez et
al. (2010) was recommended to apply to microgrids tied to the grid.
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Even though such techniques are appropriate in deterministic systems, they struggle with
stochastic variations of RES and would need a substantial computer effort in large-scale
optimization.

This is the reason why many individuals resort to the use of PSO, GA and ACO algorithms
among other metaheuristic techniques since power flow optimization is both non-convex and non-
linear. Ahead of time scheduling of a hybrid microgrid proved to be more effective with PSO,
according to Liu and Wang (2023). Nevertheless, such methods have a limitation because they have
predetermined rules of control and are not able to adapt to dynamics and uncertainty. Rule-based
controllers are the most often selected in microgrid energy management since they are very easy to
manipulate and durable. However, they cannot be recommended to be applied in the environment
with high levels of uncertainty and frequently changing data.

New technologies in the management and optimization of microgrids utilize data to control
them better, thanks to Al. A more successful short-term outcome was reported by Sharma et al.
(2021) who relied on supervised learning to predict energy demand and RES power. However,
supervised learning requires a huge set of labeled data, and it is not particularly suited to taking
action sequentially.

Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are used as
pattern recognition in load profile and RES generation. Their prediction performance has now been
improved, though they are rarely used directly in control and optimization problems.

Researchers think that DRL will be significant in the operation of microgrids since it can
figure out the most excellent course of action through trial and error in the actual environment. In
2022, the authors used a DQN to enhance the cost effectiveness of the energy scheduling in grid-
connected microgrids that are operated with random fluctuations. In 2021, the authors applied
DDPG to regulate SOC of ESS and showed better adaptability.

Despite their other benefits, the deep reinforcement learning methods are normally slow
and require the selection of appropriate hyperparameters. Moreover, untrained systems can result in
controls which are unnecessary or even dangerous to complex AC/DC systems.

Research on how to address the shortcomings of single Al models by structuring Al with
hybrids has been conducted recently. Tang et al. (2023) enhanced the convergence capabilities and
increased the policy stability of the systems of the microgrid using PSO-tuned DDPG. However, a
vast majority of the researchers have merely worked on DC microgrids or have not made
comparisons with the older systems in detail.

Some microgrid optimization papers utilized either DRL or GA alone, and hardly any
studies have developed a framework that combines the best of both DRL and GA in terms of hybrid
AC/DC microgrids. Very minimal efforts have been exerted in the area of balancing real time
power flow and cost minimization, system stability and maximization of renewable energy use in
the field.

3. PROBLEM DEFINITION AND METHODOLOGY
3.1 System Description

The given study proceeds by designing a flexible and smart network, integrating the
sources of energy and loads within the network. It has the following characteristics:
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They are referred to as solar photovoltaic (PV) panels and wind turbines and since there is
no assurance of when they will come, their trends are characterized by intermittency.

The system consists of lithium-ion batteries to store power over a long period and
introduces supercapacitors to react quickly. An assortment of residential and industrial activities
with varying demand changes.

By linking the grid it becomes feasible to have homes and businesses draw energy form the
grid when it is economical to do so and later feed the grid with any surplus energy. This system has
both connected and not connected operating modes and reflects the real hybrid AC/DC microgrids.

3.2 Objective Function

The primary objective of the optimization problem is to minimize the total operational cost
of the microgrid over a defined time horizon T, considering energy purchase, generation, and
possible revenue from energy export:

Ctotal = Z’l{:l[cg (t)Pg (t) + Cs(t)Ps (t) - Rsell(t)Pexport (t)] (1)
Where:
e (g(t): Cost of energy imported from the grid at time t
e Pg(t): Power drawn from the grid at time t
e (s(t): Operating cost of local sources (e.g., diesel generator)
e Ps(t): Power generated by dispatchable sources
e Rsell(t): Revenue per unit for energy exported to the grid
e Pexport(t): Power exported to the grid at time t

3.3 Operational Constraints
The optimization is subject to the following technical and operational constraints:
Power Balance Constraint:
2. Psource(t) = X Pioqa(t) )
This ensures that the total power supplied meets the total demand at all times.
Battery State of Charge (SOC) Limits:
SOCpin < SOC(£)SOComax ?3)
This maintains battery health and ensures sufficient storage availability.
Grid Exchange Limits:

P min < Pg(t) <P max and 0 < Pexport(t) < P max (@)
import import export

Voltage and Frequency Regulation:

Vinin S V(@) < Viax 5 fmin < F(O) < frnax )
These constraints ensure power quality and system stability.
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Figure 2. Block diagram of hybrid microgrid system and optimization parameters

The block diagram of hybrid microgrid system and optimization parameters is represented

in Figure 2.

4. AI-BASED FRAMEWORK DESIGN

In the proposed research, a framework integrating Deep Reinforcement Learning (DRL)
and Genetic Algorithms (GA) is being proposed to address the challenging, stochastic and real-time
nature of the problems that hybrid microgrids have to deal with. DRL enables the robot to select
appropriate action in an uncertain environment and GA enhances the performance and the learning
speed of the DRL agent by modifying the neural network parameters.

4.1 Deep Reinforcement Learning (DRL) Agent Design

The DDPG is applied among many other methods primarily because it works well in
continuous action spaces required to operate energy dispatch, battery storage and grid interactions

in hybrid systems.
Control Objectives of DRL Agent:

e Optimal dispatch of Distributed Energy Resources (DERS)
o Battery charge/discharge scheduling
o Bidirectional grid power flow control

State Space (St):
The input state vector at time t includes:

e D(t): Load demand forecast

e R,,qi1 Renewable generation availability (solar/wind)
e SOC(t): State of charge of the battery

e Pyriq(t): Electricity price or tariff at time t

St = [D (t)' Ravail (t); SOC(t): Pgrid (t)] (6)
Action Space (Ay):
The action vector determines how power is allocated among:

e Renewable sources
e Storage devices (charge/discharge levels)

Optimization of Power Flow in Hybrid Microgrids Using Al-based Algorithms
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e  Grid import/export

At = Psolar: Pwind.Pcharge Pdischargepimport Pexport (7)
battery’ battery grid * grid

Reward Function (ry):

To guide the learning process, a scalar reward is computed based on system objectives:

= _Ctotal(t) - /11|V(t) - Vrefl - /12 A SOC(t) (8)

Where:

Ctotal(t) isTotal operational cost at time t, V(t)is System voltage, Vref is Nominal reference
voltage, ASOC(t) is Change in battery SOC (to penalize unnecessary cycling)

A1, A2 is Weighting factors for penalty terms.

4.2 Genetic Algorithm (GA) Optimization

In this case, a method is proposed, where the Genetic Algorithm (GA) is used to find the
optimal behaviour and speed of convergence of the Deep Reinforcement Learning (DRL) agent.
Since DRL is enhanced by learning with the environment, its achievement is highly reliant on the
initial values of the significant neural network and hyperparameters. DRL-GA framework
overcomes the challenges of tuning the DDPG agent through the assistance of a globally optimal
point and adaptive updating via Genetic Algorithm. First, global search using GA, it is possible to
choose improved initial weights of the actor and critic in DDPG, as random initialization may
speed up the process or provide unsatisfactory results. On top of this, GA is expected to regulate
important hyperparameters itself, based on the performance it receives, so a user needs to perform
less manual testing. GA optimizes the valuable operation limits that include the maximum charge
on battery, the maximum power to be handed over by the wind turbine, and the limitation of the
amount of power that the turbine can deliver to the grid. Consequently, the DRL policy is more
effective and falls within the bounds of the system components in a hybrid microgrid. GA

flowchart is given in Figure 3.
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Figure 3. Flowchart representing the Genetic Algorithm
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GA Configuration Parameters:

e Population size: 30

o Crossover rate: 0.8 (for combining elite individuals)

e Mutation rate: 0.1 (to maintain genetic diversity)

e Selection method: Tournament selection

e Fitness function: Cumulative reward obtained from the DRL agent after a full episode

This integration reduces training time, improves convergence stability, and avoids suboptimal
policy entrapment. The below Table 1 is showing the parameter:

Table 1. Parameters

Parameter Suggested Value
Population Size 30-50
Crossover Probability 0.8

Mutation Probability 0.1-0.2
Distribution Index nc\eta_c (SBX) 10-20
Distribution Index nm\eta_m (Polynomial) | 20 — 100

4.3 Hybrid Al Workflow
The integrated DRL-GA framework operates through the following steps:

e Initialization: GA generates initial configurations, including neural network weights and
hyperparameters, forming a diverse population of candidate DRL agents.

e Policy Learning: Each DRL agent undergoes training over multiple episodes in a simulated
hybrid microgrid environment. Their policy is updated using the DDPG algorithm based on the
observed rewards and state transitions.

e Fitness Evaluation: At the end of training, the total cumulative reward obtained by each agent
is used to evaluate its fitness.

e GA Evolution Loop:

o GAselects top-performing individuals.

o Crossover and mutation are applied to produce the next generation.

o The process repeats until convergence criteria (e.g., reward threshold or max generations)
are met.

e Final Deployment: The best-performing DRL agent is selected and deployed for real-time
microgrid control.

5. SIMULATION RESULTS AND VALIDATION

This chapter gives experimental results that support our suggested technique to monitor
power flow procedures in a hybrid microgrid. In order to assess the cost savings, voltage reliability,
increased renewable utilization and independence of main grid, the simulation results are compared
with those achieved through simulation-based method (MILP) and particle swarm optimization
(PSO).

5.1 Simulation Setup

To evaluate the optimality of the DRL-GA-based optimization system, a co-simulation
environment was adopted to combine its electrical modeling with its decision-making system. The
hybrid microgrid composed of solar PV, wind turbines, lithium-ion batteries, supercapacitors and

Optimization of Power Flow in Hybrid Microgrids Using Al-based Algorithms



20 a

bidirectional grid connecting was studied repeatedly by creating a model in MATLAB/Simulink.
Due to this environment, a dynamic simulation could be done on the response of electrical
equipment, the transfer of energy and the changing power supplies based on loads and generation.
The Deep Reinforcement Learning agent and Genetic Algorithm were applied using Python,
TensorFlow and Keras simultaneously.

The agent was taught any energy management policies it discovered in the course of
training, through real-time observations of the state, with the help of the DDPG algorithm. To unify
MATLAB and Python, the system used OpenAl Gym-style APIs, socket communication or
MATLAB Engine for Python to enable the control agent to talk directly to the physical simulation
in real time. The results consist of 96 time steps after a 15-minute simulation run in 24 hours which
is represented in Figure 4. Real weather records data was employed to supply solar irradiance and
wind speed and time-varying loads based on residence and industry were also incorporated in the
profile. Using this hybrid platform, the optimization framework has been tested and its
performance proved in changing and unpredictable operating conditions.
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Figure 4. Battery SOC Trajectory Over 24 Hours
5.2 Baseline Comparison

Table 2 depicts the comparison of the proposed model with baseline models. The
performance of the proposed DRL-GA approach was benchmarked against two widely used
optimization strategies:

e MILP: Used as a deterministic baseline model, ideal for linear energy scheduling problems
under simplified assumptions.

e PSO: A metaheuristic method that can handle nonlinearity but lacks adaptability to real-time
system dynamics.

Table 2. Performance comparison with baseline models

Method | Operational Cost | Voltage Deviation | Renewable Grid Dependency
(INR) (p.u.) Utilization (%) (%)

MILP 5,840 +0.09 78.4 35.7

PSO 5,620 +0.07 81.2 30.2

DRL- 5,110 +0.04 88.7 18.9

GA
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Interpretation:

o DRL-GA achieved the lowest operational cost, saving ~12% over PSO and ~14% over MILP.
e It maintained superior voltage regulation, crucial for power quality in sensitive AC/DC loads.
e The model promoted maximum use of renewables and significantly reduced grid import.

5.3 Performance Evaluation

The DRL-GA framework was used to simulate tasks and significant enhancements over
other optimization methods were discovered. Compared to PSO and MILP, the model provided a
substantial cost reduction in cases when it was used as a replacement, the primary savings being
attained through utilization of renewable energy during high price periods and the optimal
utilization of batteries. Voltage regulation (keeping voltage in the needed limit +/- 0.04 p.u.) could
be achieved due to the cost of voltage deviation inclusion to the reward function, which enabled the
sources and storage to cooperate efficiently.

As a result of GA-adjusted thresholds in the DRL agent, the charge of the battery never
dropped to critically low states or climbed to extreme heights but remained within the acceptable
range of the system, between 20 and 90 percent. Optimally trained DRL-GA required just 800
training episodes, compared to standalone DRL which required more than 1,200 training episodes
before it recorded good training performance. Also, the dependence on the grid decreased to 18.9%,
which proved that the microgrid can operate independently and, therefore, it can be installed in the
place where it is required to be self-sufficient. Performance comparison is illustrated in Figure 5.

6000 5840
5620 MILP
; . PSO
s DRL-GA

50001
2 4000
=
]
=
ot
c 30001
M
E
£
a. 2000

1200
10001 w00
0 009 007 004 784 012  88.7 357 302 189
A ) ) %) A code
eviato” w® U{\\\laﬂon ' eﬂde(‘oJ ¢ ence EpisC
\lo\tage e ne\Na‘O\e G(\d Dpep L Con\jefq

Figure 5. Performance Comparison of Optimization Methods

6. CONCLUSION

In this paper, a novel hybrid structure was initiated, which incorporates DRL and GA to
enhance power flow in AC/DC microgrids. The new method can overcome the limitations of past
and heuristic optimization based solutions because it enables active, continuous control of DERs,
ESS and the grid under dynamic and uncertain conditions. The presence of DRL in the system
makes the policy smarter since the environment reacts, and GA refines the settings of the neural
network and significant operational parameters, enhancing convergence. The simulation indicated
that the DRL-GA framework is significantly more effective than the conventional MILP and PSO
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approaches, which results in lower operating cost, better voltage stability, lesser stresses on the
batteries and higher percentage of renewable energy to utility companies. When this framework is
applied, there is more rapid convergence of training and a reduction of the level of training
variance due to the initialization by GA. Moreover, the system possessed high capability of self-
powering itself that was useful in remote and islanded microgrid conditions. Overall, the approach
provides a feasible, smart and constraint-adherent way of managing energy in the modern hybrid
microgrids.
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