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 Due to the massive expansion of wireless applications, the ever-

increasing demands for mobile technology, and the development of 

Internet of Things technology, wireless networks are confronting an 

increase in data traffic and resource management issues. Due to their 

capacity for data storage and spectrum efficiency, fifth-generation 

cellular networks have attracted a lot of interest. In order to meet a 

variety of user needs, multiple-input multiple-output (MIMO) 

networks are dependable solutions for data storage and capacity 

problems. MIMO systems are crucial for achieving revolutionary 

improvements in energy efficiency (EE) and area throughput. EE is 

most economical and one of the simplest strategies to fight global 

warming, energy reduction bills, and improvize competitive 

performance. EE and area throughput can be greatly enhanced by 

Deep Learning (DL). In 5G wireless communication systems, it is 

essential. The suggested model considered the total energy utilization 

of the circuit elements and the power amplifier of the BS, as well as 

the user equipment (UE) with a single antenna. In this paper, Green 

and Intelligent Signal Processing: Deep Learning Approaches for 

Energy-Efficient MIMO Systems (GISPDL-EEMIMO). The 

proposed GISPDL-EEMIMO technique undergoes data collection, 

data preprocessing, feature extraction, and prediction. A set of 

experiments has been performed to demonstrate the promising 

performance of the GISPDL-EEMIMO technique. The comparative 

findings showed that, in terms of distinct measures, the GISPDL-

EEMIMO technique outperforms other existing models. 
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1. INTRODUCTION 

In the context of future 5G wireless communications, multiple-input multiple-output (MIMO) 

has been viewed as a viable technology due to its ability to achieve improved spectral efficiency and 

broader bandwidth [1]. To achieve completely digital signal processing in MIMO systems, each 

antenna typically needs its own radio-frequency (RF) chain, which includes a mixer, high resolution 

digital-to-analog converter, etc. With the wide range of antennas and high RF chain energy 

consumption, MIMO would result in prohibitive hardware complexity and energy usage. 

Recently, hybrid precoding was introduced to reduce the number of RF chains needed. Its main 

concept is to break down the digital precoder into a small digital precoder that only needs a few RF 

chains and a huge analog beamformer that is realized by the analog circuit [2]. The low-rank properties 

of mmWave channels allow for the spatial multiplexing advantages to be achieved with a small digital 

precoder, resulting in near-optimal performance for hybrid precoding. Higher data rates and energy 

efficiency (EE) are constant goals for wireless communication systems due to the quick advancement 

of mobile communication technologies. 

The MIMO technology have become a popular paradigm to support the ongoing popularity of 

mobile applications. These systems use hundreds of antennas at the BS to effectively serve a million 

user equipments (UEs) to meet the low-latency, high-rate, and ultra-reliable communication demands 

of future applications. Both central and dispersed deployments of a significant number of antennas are 

possible in real-world applications of huge MIMO systems [3]. 

In the former case, fronthaul is not required because all of the antennas are placed inside a 

small area. Massive MIMO mitigates UE interference and lowers transmission energy consumption by 

utilizing channel hardening and advantageous propagation characteristics, enabling higher throughput 

and increased connectivity. In the latter case, however, separate antennas are linked to a CPU through 

the fronthaul network, while being geometrically separated. 

In 5G, the huge MIMO paradigm holds a lot of promise. It can offer greater spectrum and 

energy efficiency and contains thousands of antennae. Nevertheless, every antenna, including noise 

amplifiers and digital-to-analog and analog-to-digital converters, is given a certain frequency. As a 

result, several active antennas have been used, which increases power consumption. As a result, BS's 

hardware costs have gone up. The spectrum efficiency can be considerably increased by providing 

additional antennas for numerous users on the same radio channel frequency. However, the benefits of 

energy efficiency are diminished by power consumption requirements [4]. 

Previous methods have demonstrated that reducing the low resolution caused by power 

consumption has drawbacks. The dynamic nature of WSN, in particular allocation of resources in huge 

MIMO, is what drives our research. As the need for wireless transmission that is fast, dependable, and 

energy-efficient (EE) grows, resource allocation optimization takes center stage. In connection with 

complicated situations that require both continuous and discrete decision-making makes this difficulty 

even more apparent. 

Due to its direct impact on operational costs and sustainability, EE has emerged as a crucial 

statistic in contemporary WSN. It is a challenging issue that requires sophisticated solutions to achieve 

high EE while guaranteeing smooth power allocation (PA) and user association. Therefore, meeting 

this urgent need for wireless networks that are more ecological and efficient is what drives us. We are 
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motivated by the opportunity to significantly improve customer enjoyment, energy conservation, and 

resource management [5]. 

Emerging machine learning (ML) is therefore a useful tool for resolving these kinds of 

challenging multi-objective issues. The best branch of machine learning (ML) for resolving non-

convex problems. The three main components of the suggested solution—agents, reward, and action—

allow the self-learning capabilities from the surroundings in RL-based optimization techniques. We 

used a DL algorithm in this study to present a new technique. The following are this paper's primary 

contributions: 

 

 Our study offers a sophisticated solution to the user association and PA problems, with the 

main goal being to maximize EE in the framework of a huge MIMO system. By making EE 

our main objective, we tackle a crucial component of contemporary WSN, emphasizing the 

usefulness of our study. 

 According to the simulation results, the suggested GISPDL-EEMIMO strategy outperforms the 

other approaches. 

 By using system simulations, we show that the suggested method converges steadily and that, 

as the number of network users rises, it performs more energy efficiently than the traditional 

MIMO. 

1.2 MIMO System Model 

Various antennas are used at both the transmitter and the receiver to broadcast the signals [6] 

in a MIMO system. Let    and    be the amount of    antennas and receiving (  ) antennas, and 

    be an M‐ary modulated symbol. Then, in the         MIMO systems, a vector of several 

symbols         sent simultaneously can be written as 

              
                                                              (1) 
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Where the additive white Gaussian noise samples at     receiver antenna are denoted by 

        and        . With variance N0, represented as CN(0, N0), we assume that the noise is 

equally distributed and independent. 

In this paper, Green and Intelligent Signal Processing: Deep Learning Approaches for Energy-

Efficient MIMO Systems (GISPDL-EEMIMO). The proposed GISPDL-EEMIMO technique 

undergoes data pre-processing, feature extraction, and prediction. A set of experiments has been 

performed to demonstrate the promising performance of the GISPDL-EEMIMO technique. The 

comparative findings showed that, in terms of distinct measures, the GISPDL-EEMIMO technique 

outperforms other existing models. 
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2. RELATED WORKS 

Sahu et al [7] examine the issue of designing relay precoders that are energy efficient for 

MIMO cognitive relay networks (MIMO-CRNs). Traditionally, computationally costly optimization 

techniques are used to handle this non-convex fractional programming problem. In this work, we 

suggest a method for computing an approximation answer that is based on DL. In particular, an offline 

computed optimal solution is applied for training a deep neural network (DNN). The suggested plan is 

divided into three stages: online deployment, offline training, and offline data generation. The 

suggested technique is appropriate for real-time implementation since the numerical results 

demonstrate that the suggested model offers equivalent performance at a substantially lower 

computational complexity than the traditional algorithm. 

Sharma and Yoon [8] utilize the Parameterized DQN (PD-DQN), a multi-agent DRL 

technique, to tackle the difficult issues of PA and user association in huge (M-MIMO) communication 

networks. Our method addresses a multi-objective optimization problem in M-MIMO networks that 

seeks to optimize network utility while satisfying strict QoS criteria. We present a unique multi-agent 

DQN framework to tackle these problems’ non-convex and nonlinear characteristics. We can learn a 

near-optimal policy thanks to this framework, which defines a huge action space, state space, and 

reward functions. Simulation findings show that our technique outperforms both RL and conventional 

DQN methods. In particular, we demonstrate that our method performs better in terms of convergence 

rate and ultimate performance than conventional DQN methods. Furthermore, when it comes to 

solving largescale multi-agent problems in M-MIMO systems, our solution outperforms DQN methods 

by 72.2% and the RL method by 108.5%. 

Gupta et al. [9] suggest a LSTM based approach that increases energy efficiency by making 

decisions based on dynamic wireless network information, channel complexity, and RIS energy 

harvesting. The suggested LSTM model predicts the ideal RIS configuration for every transmission 

after being trained in a real-time setting. These transmissions are intended for users spread over 

different areas of the respective wireless network. The system model is constructed using the LSTM 

model and Adam optimizer, and its robustness and energy efficiency are investigated. According to the 

outcomes of several simulations, the LSTM framework increases the RIS elements from 9 to 25 while 

boosting energy efficacy to 35.42%. Furthermore, the model can attain a net data rate of over 100 

bps/Hz. 

Hojatian et al. [10] examine the issue of optimizing the EE of HBF transmitters with fully 

digital precoders (FDP). We start by suggesting an energy model for various beamforming 

configurations. We then construct the transmitter configuration for FDP and HBF using a self-

supervised learning (SSL) approach based on the suggested energy model in order to maximize the EE. 

The suggested deep neural networks can adjust to varying numbers of active users while offering 

various trade-offs between energy usage and spectral efficiency. According to simulation results, even 

when trained with faulty CSI, the suggested solutions can outperform traditional approaches in terms 

of EE. Additionally, we demonstrate that compared to traditional approaches, the suggested solutions 

are simpler and more resilient to noise. 

Sahu et al. [11] investigate the challenge of creating an EE joint precoder for MIMO-CRN at 

both the source and the relay. In order to discover the best solution for such nonconvex fractional 

programming problems, existing optimization techniques usually have a high computational 
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complexity. Unlike previous research, this paper uses a DNN to create the joint precoders utilizing a 

data-driven technique. The numerical findings show that, as compared to the traditional optimization-

based methodology, this method offers a comparable performance at a much reduced computational 

cost. Additionally, it is demonstrated that the suggested method is very resilient to changes in the 

channel statistics, making it appropriate for real-time deployment. 

DEVIPRIYA [12] For downlink MIMO-NOMA systems, the PA problem was examined using 

both non-DL and DL techniques. With this realization, the non-DL approach is used to address the 

problem first, and the proposed PASR (PA based on shifting additional resources) strategy resolves it. 

Two distinct assumptions are used to study this scheme: variable inter-cluster power (V-PASR) and 

fixed inter-cluster power (F-PASR). Ultimately, a ML approach was put up to address the issue of 

power distribution. For PA, an EE-DNN model was suggested in order to lower the complexity and 

latency of the previously discussed issue. The efficiency of the suggested EE strategies is confirmed by 

extensive simulation results. The suggested F-PASR and V-PASR algorithms were shown to perform 

better than the traditional approach. Additionally, it was confirmed that while deep learning-based 

frameworks require less computation time, they perform somewhat worse than non-deep learning 

methods. 

Li et al. [13] examines a cell-free MIMO (CF-mMIMO) system and develops a two-stage 

energy efficiency (EE) optimization algorithm based on iterative search for the system's uplink 

communication. Reliability is given top priority in the first step to guarantee that all users satisfy the 

URLLC's latency and reliability standards. When URLLC is satisfied, the second stage optimizes the 

EE. We further suggest a convolutional neural network architecture (RACNN) to approximate an ideal 

resource allocation strategy and to realize the real-time and stable output, taking into account that 

iterative search algorithms have a variable number of iterations and a large computational overhead. 

Deep user correlations are extracted from the global channel features via this structure. Weight loss 

adaptation and multitask learning techniques are used to increase the model's rate of convergence. In 

addition, we use deep transfer learning to modify RACNN parameters to account for the possibility of 

dynamic communication circumstances, which lowers the overhead of training time and the 

requirement for training samples. Lastly, experimental simulations are used to verify the effectiveness 

of deep transfer learning and the suggested algorithm, RACNN. 

 

3. PROPOSED METHODOLOGY  

In this work, we introduce a GISPDL-EEMIMO approach. The proposed GISPDL-EEMIMO 

technique undergoes data preprocessing, feature extraction, and prediction. The overall architecture of 

the GISPDL-EEMIMO model is shown in Figure 1. 

3.1 Data Preprocessing 

In EE-MIMO systems, normalization is a popular data pre-processing method for scaling input 

signal values for reliable and effective deep learning model training [14]. Z-score normalization (Eq. 4) 

is used to normalize each segment in order to lessen the impact of any outlier samples in that segment. 

   
    

 
                                                                     (4) 

   is the Z-score value of the    sample    for a given segment, and   and   are the sample mean and 

standard deviation for that segment. 
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Figure 1. Overall architecture of the GISPDL-EEMIMO model 

3.2 Feature Extraction Based CNN 

CNN uses deep learning to provide intelligent [15] and EE processing by extracting important 

spatial information from MIMO signal data. A common FFNN, the classic CNN, is utilized extensively 

in speech detection, image recognition, and other domains due to its strong feature extraction abilities. 

An input, a convolutional, a pooling, and a fully connected layers typically make up a conventional 

CNN. The convolutional layer remove noise and adaptively extract the features of the input dataset. 

In turn, the relevant convolution kernel is chosen to handle the input data. Different features 

are represented by different convolution kernels. By combining several convolution kernels, the 

convolutional neural network often improves the model's feature extraction capabilities and produces 

multi-layer data with defect features. The formula for convolution is: 

  
    ∑   

    
    

    
    

                                                     (5) 

In Eq. (5),    
  and   

  are the weight and bias matrices,   refers to the activation function, the 

part of the input data that has to be convolved is represented as      , the dimension of the input data is 

denoted by   , and the number of layers in the network is denoted as  .  

        {
     
     

                                                              (6) 
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The pooling layer is otherwise known as the down-sampling layer. The pooling layer is 

frequently employed as the mean and the     pooling function. The convolution kernel recovers the 

average or maximum value of the associated area by iteratively navigating through the target data. 

As a result, the pooling layer's job is to reduce the dimensionality of the convolution layer's 

output data while extracting its key characteristics. The largest pooling function is selected in this 

model. It is expressed as: 

  
      

         
     

                                                       (7) 

3.3 Energy Efficiency Using XCovNet 

Energy efficiency is seen as a key performance metric in MIMO, particularly as the need for 

high-speed data and reliable large-scale connectivity grows. Moreover [16], MIMO technology, which 

increases the robustness of wireless communication by enabling multiplexing and spatial diversity, 

uses several antennas at both the transmitter and the receiver. XCovNet is a deep learning network that 

learns cross-covariance patterns between sent and received signals in order to predict channel state 

information (CSI) in MIMO systems. XCovNet receives the parameter with dimension   ×   ×  as 

input. The foundation of XCovNet is the Inception architecture. By utilizing separable convolutions 

(Conv), the XCovNet technique is regarded as an effective and efficient model that can be used without 

reducing performance rate. The three blocks that make up this network are the Conv block, the 

Depthwise Separable Conv block, and the completely linked layer block. Conv layers are used by the 

Conv block of XCovNet, and the layer after the input generates Conv kernels for creating different 

feature maps that display the features of the input data. 

All of the Conv kernels are distributed over each input data region throughout the feature map 

construction process. Several Conv layers are used to obtain the feature map's relative results. The 

formula for calculating the feature map       
  is provided below when the feature value       of a      

feature map of     layer. 

      
      

      
      

                                         (8) 

The input patch on layer   at the         1ocation is represented by     
  in this instance, the 

weight vector is shown by     
 , the generated feature maps are specified by       

 , and the bias 

values of the     feature map and     1ayer are shown by     
 . 

Additionally, the shared kernels     
  are used to create the feature maps       

 . Among the 

many advantages of the weight distribution system is its reduced complexity. Following the Conv 

layer, feature maps take advantage of the activation and max pooling layers. The parametric PreLU, a 

generalized rectified unit activation function with a negative slope, is employed here and is represented 

as follows: 

      {
           
            

                                                 (9) 

The activation function, which achieves faster convergence with fewer overfitting risks, is used 

to identify nonlinear features, while the    -pooling layer is used to reduce the dimension of the 

feature map.This block is an example of a Conv technique that operates in both space and depth. Here, 

two phases—depth-wise and pointwise Conv—are included to make the Conv operation simpler. 
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These Conv are typically used by DL frameworks when filters cannot be broken down into smaller 

ones. Additionally, a kernel is used by the pointwise Conv, and it repeats over each point. 

Two Conv layers are used to mine the features after an input of dimension R × C × 3 is sent to 

the Conv block. Additionally, each Conv layer has PreLU activation, padding, and two distinct 

Conv2D layers. To improve convergence, the activation is normalized in batches, and the max pooling 

layer is used to reduce the spatial dimension. Furthermore, for regularization, a dropout layer with a 0.2 

rate is used. Furthermore, overftting issues are avoided by using the dropout layer. After that, a fatten 

layer is used to transform the 3D tensor into a 1D vector. Furthermore, dense is considered the final 

layer, after which the class probabilities are converted into outputs by utilizing the sofmax activation 

function. Additionally, this network maintains computation efficiency while capturing the important 

information. 

 

4. RESULTS AND DISCUSSIONS 

The simulation outcomes of GISPDL-EEMIMO are demonstrated in this section. In this case, 

the BS transmits the signal to three header nodes, which subsequently disseminate it to every piece of 

UE below it. It is demonstrated how to investigate GISPDL-EEMIMO for the Rayleigh channel by 

varying the number of users. The user and throughput graph. With 10, 20, 30, and 40 repetitions, 

GISPDL-EEMIMO achieves a throughput of 551.262, 515.922, 533.26, 485.206, and 497.922 Mbps 

for 300 users, correspondingly. The analysis of GISPDL-EEMIMO based on the sum rate is shown in 

Figure 4.  For 100 users, the cumulative rate as determined by GISPDL-EEMIMO is 269.930 Mbps for 

10 iterations, 236.630 Mbps for 20 iterations, 221.630Mbps for 30 iterations, and 230.630 Mbps for 40 

iterations. The analysis of GISPDL-EEMIMO based on energy efficiency is indicated in Figure 2. The 

parameter settings used in the GISPDL-EEMIMO approach are illustrated in Table 1. 

With iterations 10, 20, 30, and 40, GISPDL-EEMIMO achieved energy efficiency of 

74.943kbits/joule, 63.102kbits/joule, 55.014 kbits/joule, 31.012 kbits/joule, and 39.021 kbits/joule for 

200 users. The GISPDL-EEMIMO throughput-based analysis is indicated. For 200 users with 10, 20, 

30, and 40 iterations, GISPDL-EEMIMO achieves throughputs of 497.922 Mbps, 485.206 Mbps, 

533.26Mbps, and 551.262Mbps. GISPDL-EEMIMO's sum rate, when 400 users are taken into account, 

is 236.630 Mbps with 10 iterations, 221.63 Mbps with 20 iterations, 230.630 Mbps with 30 iterations, 

and 269.930 Mbps with 40 iterations. With 10, 20, 30, and 40 iterations, GISPDL-EEMIMO computed 

an energy efficiency of 51.632 kbits/joule, 60.238 kbits/joule, 64.752 kbits/joule, and 72.542 

kbits/joule for 300 users. 

Table 1. Parameter settings in GISPDL-EEMIMO approach 

PARAMETERS VALUES PARAMETERS VALUES 

Radius of the 

network area 
400m Number of BS 1 

Number of UE 150 
Max connected BS 

per UE 
2 

Number of header 

nodes 
4 Total simulation time 9s 

Time step 1s   
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Figure 2. Average EE comparison of GISPDL-EEMIMO with other existing approaches 

Since the suggested GISPDL-EEMIMO offered superior learning performance in our 

simulations, we first assess its convergence at a fixed learning rate of 0.01. To find the number of TSs 

needed for our frameworks to find the best PA policy, we fix the location of every user. For two 

frameworks, the loss function value falls and tends to a stable value within 200 TS, as seen in Figure 3. 

The value is sufficiently modest to estimate the Q value with accuracy. 

Then, using various PA strategies, we contrast the algorithms that have been suggested for the 

random moving system. To make the comparison easier to understand, it should be noted that all 

findings are averaged using a moving window of 100 TSs. We examine the performance of our 

GISPDL-EEMIMO based frameworks for the sum EE maximization goal.  

We examine averaged sum EE performance in 5000 TSs with varying transit power 

constraints. While the BiLSTM model marginally increases and continues to drop since it always 

requires full power for the signal transmission, the outcomes of GISPDL-EEMIMO frameworks grow 

and trend to stable values as the maximum power increases, as illustrated in Figure 2. This is due to the 

fact that our algorithms can dynamically distribute the power based on the communication conditions 

to optimize the cumulative EE regardless of how pmax changes, as long as the data rate requirement is 

met. And we verify the averaged energy efficiency versus power limitation in Figure 4. The EE 

variation with the minimum required date rate enhanced performance of the GISPDL-EEMIMO 

techniques over other approaches. 

Table 2. Comparative discussion of GISPDL-EEMIMO 

METRICS 
GISPDL-

EEMIMO 
BiLSTM DRL PCA 

MTPA-

OMA 

Throughput 

(Mbps) 
551.262 515.922 533.26 485.206 497.922 

Sum rate (Mbps) 269.930 236.630 221.630 230.630 242.610 

Energy efficiency 

(kbits/joule) 
74.943 63.102 55.014 31.012 39.021 
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Figure 3. EE Vs transmit power of GISPDL-EEMIMO technique with other approaches 

 

 
Figure 4. Performance measure of GISPDL-EEMIMO throughput with other approaches 

 

The performance measure of GISPDL-EEMIMO throughput with other approaches is shown in 

Figure 4. Based on the current channel circumstances in each TS, the GISPDL-EEMIMO-based 

frameworks may continuously control and dynamically select each user's transmit power. In particular, 

the GISPDL-EEMIMO framework's averaged sum EE value over all 5000 TSs is 25.47% greater than 

the PCA method, whereas the DRL framework's values are 18.38% higher. The averaged cumulative 

EE value for the BiLSTM framework across all 5000 TSs is 22.27% higher than the MTPA-OMA 
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technique, while the MDPA framework's values are 15.3% higher. More importantly, using full power 

for transmission is wasteful and wastes energy because it lowers the system's EE as long as all users' 

data rate requirements are met. This further demonstrates how crucial PA is to enhancing the GISPDL-

EEMIMO system's performance. Additionally, we confirm that the GISPDL-EEMIMO algorithms 

outperform other approaches in terms of performance. 

 

 
Figure 5. Performance measure of GISPDL-EEMIMO sum rate with other approaches 

 

The analysis of GISPDL-EEMIMO based on the sum rate with alternative techniques is shown 

in Figure 5. The GISPDL-EEMIMO total rate, when 400 users are taken into account, is 286.564 Mbps 

with 10 iterations, 256.576 Mbps with 20 iterations, 268.964 Mbps with 30 iterations, and 244.26 

Mbps with 40 iterations. The GISPDL-EEMIMO technique achieved the maximum sum rate compared 

with other approaches. 

 

5. CONCLUSIONS 

In this paper, Green and Intelligent Signal Processing: Deep Learning Approaches for Energy-

Efficient MIMO Systems (GISPDL-EEMIMO). The proposed GISPDL-EEMIMO technique 

undergoes data pre-processing, feature extraction, and prediction. A set of experiments has been 

performed to demonstrate the promising performance of the GISPDL-EEMIMO technique. The 

comparative findings showed that, in terms of distinct measures, the GISPDL-EEMIMO technique 

outperforms other existing models. 
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